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Abstract. We calculate the D+
s → φ transition form factors V , A0, A1 and A2, and study the semilep-

tonic decay of D+
s → φ�̄ν based on the QCD sum rule method. We compare our results of the ratios of

V (0)/A1(0), A2(0)/A1(0), ΓL/ΓT, and the total decay branching ratio of D+
s → φ�̄ν with the experimental

data and find that they are consistent.

1 Introduction

The semileptonic decay of charm meson is important for
studying the strong and weak interactions. It can be
used to test techniques developed for solving perturba-
tive and non-perturbative problems in quantum chromo-
dynamics (QCD), and to extract elements of the Cabibbo–
Kobayashi–Maskawa (CKM) matrix. Semileptonic decay
is simpler than hadronic decay of the charm meson be-
cause leptons do not involve the strong interaction. The
amplitude of semileptonic decay can be decomposed into
several transition form factors due to the Lorentz property
of the hadronic matrix element. The form factors include
all the non-perturbative effects. Several methods can be
used to treat these problems, such as the quark model, the
QCD sum rule and lattice QCD, among which the QCD
sum rule and lattice QCD are based on first principles of
QCD.

The method of QCD sum rules [1] has been widely
used in hadronic physics since its establishment in the
late 1970s. For semileptonic decays of the charm meson,
D+ → K̄0e+νe was firstly studied by the QCD sum rule
method with the three-point correlation function [2]. Sev-
eral years later, the QCD sum rule method was extended
to semileptonic decays of the B meson, B → D(D∗)�ν̄ [3]
and B → πeν [4]. In these works, the form factors f+(q2)
and fV (q2) are calculated at the point q2 = 0, where q2 is
the momentum transfer squared. For the whole physical
region of 0 ≤ q2 ≤ q2

max, the form factors are either as-
sumed to be under pole dominance, f(0)/

(
1 − q2

m2
pole

)
, or

a linear approximation was used. In [5,6], D → K̄0e+νe,
K̄0∗

e+νe and D → πeν, ρeν were studied, where the QCD
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sum rule method was extended to a very large value of q2

with a careful treatment of non-Landau-type singularities.
Ds decays to the η and η′ final states were studied in [7].

In this work, we study D+
s → φ�̄ν by the QCD sum

rule method. This decay mode has been measured in an
experiment a long time before [8–11]. Now it is necessary
to analyze it theoretically. We perform a calculation up to
contributions of operators of dimension 6 in the operator-
product expansion (OPE) approach and keep the mass of
the s quark. In our result, the large contributions come
from the unit operator I (result of perturbative diagram)
and a condensate of operators of dimension 3. An op-
erator of dimension 5 gives a smaller contribution. The
contributions of operators of dimension 6 are negligible.
When calculating the contribution of a perturbative di-
agram and gluon condensate (operator of dimension 4),
Cutkosky’s rule has been used. Therefore the subtraction
of the continuum contribution is conveniently performed
not only for a perturbative diagram but also for the con-
tribution of a gluon condensate. After some long calcula-
tion steps, we find that the contributions of the diagrams
for the gluon condensate cancel each other, so there is no
gluon-condensate contribution in the D+

s → φ transition.
This is our new finding.

There are two independent Borel parameters M2
1 and

M2
2 in manipulating three-point correlation functions. In

general, to simplify the numerical analysis, a fixed ratio
of M2

1 /M2
2 was taken in recent references. In this work,

we make the numerical analysis in the whole region of
independent M2

1 and M2
2 to select the stability “window”,

so it is different from taking a fixed ratio of these two Borel
parameters.

We calculate the Ds → φ transition form factors V ,
A0, A1, A2 and the branching ratio of D+

s → φ�̄ν. Our
result of the ratios of V (0)/A1(0), A2(0)/A1(0), ΓL/ΓT
(ΓL and ΓT denote the decay widths of the D+

s to φ meson
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in longitudinal and transverse polarization, respectively),
and the total branching fractions are in agreement with
the experimental data.

Recently, just before this work was finished, we found
that D+

s → φ�̄ν was also calculated in [12]. However, this
analysis is very different from ours. First, we carefully
keep to the requirement that the double Borel parame-
ters M2

1 and M2
2 should not be too large for keeping the

continuum contribution small, and at the same time, M2
1

and M2
2 should not be too small for keeping the trun-

cated OPE series effective, i.e., we keep the contributions
of higher dimension operators small, and we get a very
different stability “window” for the Borel parameters. Sec-
ond, our results of the transition form factors are different
from theirs. Especially for A2, these authors got a negative
value; however, we get positive one. Using their values of
the form factors, although one can get the total branching
ratio of D+

s → φ�̄ν to be compatible with the experimen-
tal result, the ratio of ΓL/ΓT will be too large. But in our
case, ΓL/ΓT = 0.99 ± 0.43, which is consistent with the
world average of 0.72 ± 0.18.

This paper is organized as follows. In Sect. 2, we briefly
introduce the QCD sum rule method used in this work.
Section 3 contains the calculation. Section 4 is the nu-
merical analysis and discussion. Section 5 is devoted to a
summary.

2 The method

To calculate the transition form factors of semileptonic
Ds meson decays, the standard procedure in the QCD
sum rule method is to consider the three-point correlation
function defined by

Πµν = i2
∫

d4xd4yeip2·x−ip1·y〈0|T{jφ
ν (x)jµ(0)jD

5 (y)}|0〉,
(1)

with the currents having the same quantum numbers as
the relevant mesonic states under consideration, which are
defined by
(1) the current of the Ds channel, jD

5 (y) = c̄(y)iγ5s(y);
(2) the current of the weak transition: jµ(0) = s̄γµ(1 −
γ5)c;
(3) the current of the φ channel: jφ

ν (x) = s̄(x)γνs(x).
On one hand, inserting a complete set of intermediate

hadronic states into the correlation function, and using the
double dispersion relation, one can express the correlation
function in terms of a set of hadronic states,

Πµν =
∫

ds1ds2
ρ(s1, s2, q

2)
(s1 − p2

1)(s2 − p2
2)

, (2)

with

ρ(s1, s2, q
2) =

∑
XY

〈0|jφ
ν |X〉〈X|jµ|Y 〉〈Y |jD

5 |0〉

×δ(s1 − m2
Y )δ(s2 − m2

X)θ(p0
X)θ(p0

Y ),

where X and Y denote the complete set of hadronic states
of the φ and Ds channels, respectively. pX and pY are the

four-momentum of the X and Y states, s1 = p2
Y , s2 = p2

X ,
and q = p1 − p2. Integrating over s1 and s2 in (2), we can
obtain

Πµν =
∑
XY

〈0|jφ
ν |X〉〈X|jµ|Y 〉〈Y |jD

5 |0〉
(m2

Y − p2
1)(m

2
X − p2

2)
+continuum states.

(3)
Separating the ground states of the Ds and φ channels,
apparently the above equation becomes

Πµν =
〈0|jφ

ν |φ〉〈φ|jµ|Ds〉〈Ds|jD
5 |0〉

(m2
Ds

− p2
1)(m

2
φ − p2

2)

+ higher resonances and continuum states. (4)

The weak transition matrix element Ds → φ can be
decomposed as

〈φ(ε, p2)|jµ|Ds(p1)〉

= εµναβε∗νpα
1 pβ

2
2V (q2)

mDs
+ mφ

−i
(

ε∗
µ − ε∗ · q

q2 qµ

)
(mDs

+ mφ)A1(q2)

+i

[
(p1 + p2)µ − m2

Ds
− m2

φ

q2 qµ

]
ε∗ · q

A2(q2)
mDs

+ mφ

−i
2mφε∗ · q

q2 qµA0(q2), (5)

where q = p1 − p2. The vacuum-to-meson transition am-
plitudes can be parameterized through defining the corre-
sponding decay constants,

〈0|s̄γνs|φ〉 = mφfφε(λ)
ν ,

〈0|s̄iγ5c|Ds〉 =
fDsm

2
Ds

mc + ms
. (6)

Finally the correlation function can be expressed in terms
of the meson decay constants and the Ds → φ transition
matrix element,

Πµν =
mφfφε

(λ)
ν 〈φ(ε(λ)

ν , p2)|jµ|Ds(p1)〉fDm2
Ds

(m2
Ds

− p2
1)(m

2
φ − p2

2)(mc + ms)

+higher resonances and continuum states. (7)

On the other hand, the correlation function of (1)
can be evaluated at negative values of p2

1 and p2
2 by the

operator-product expansion in QCD, in which the time-
ordered current operators in (1) is expanded in terms of a
series of local operators with increasing dimensions,

i2
∫

d4xd4yeip2·x−ip1·yT{jφ
ν (x)jµ(0)jD

5 (y)}
= C0µνI + C3µν Ψ̄Ψ + C4µνGa

αβGaαβ

+ C5µν Ψ̄σαβT aGaαβΨ + C6µν Ψ̄ΓΨΨ̄Γ ′Ψ + · · · , (8)

where the Ciµν are Wilson coefficients, I is the unit op-
erator, Ψ̄Ψ is the local fermion field operator of the light
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quarks, Ga
αβ is the gluon strength tensor, Γ and Γ ′ are

the matrices appearing in the procedure of calculating the
Wilson coefficients. Sandwiching the left- and right-hand
sides of (8) between two vacuum states, we get the cor-
relation function in terms of the Wilson coefficients and
condensates of local operators,

Πµν = i2
∫

d4xd4yeip2·x−ip1·y〈0|T{jφ
ν (x)jµ(0)jD

5 (y)}|0〉
= C0µνI + C3µν〈0|Ψ̄Ψ |0〉 + C4µν〈0|Ga

αβGaαβ |0〉
+ C5µν〈0|Ψ̄σαβT aGaαβΨ |0〉
+ C6µν〈0|Ψ̄ΓΨΨ̄Γ ′Ψ |0〉 + · · · (9)

For later convenience, we shall reexpress the above equa-
tion. In general, it can be expressed in terms of six inde-
pendent Lorentz structures

Πµν = −f0εµναβpα
1 pβ

2

− i(f1p1µp1ν + f2p2µp2ν + f3p1νp2µ

+f4p1µp2ν + f5gµν). (10)

Each fi includes perturbative and condensate contribu-
tions

fi = fpert
i + f

(3)
i + f

(4)
i + f

(5)
i + f

(6)
i + · · · , (11)

where f
(3)
i , · · · , f

(6)
i are contributions of condensates of di-

mension 3, 4, 5, 6, · · · in (9). In the next section we can see
that the perturbative contribution and gluon-condensate
contribution can be finally written in the from of this dis-
persion integration:

fpert
i =

∫
ds1ds2

ρpert
i (s1, s2, q

2)
(s1 − p2

1)(s2 − p2
2)

,

f
(4)
i =

∫
ds1ds2

ρ
(4)
i (s1, s2, q

2)
(s1 − p2

1)(s2 − p2
2)

.

We approximate the contribution of higher resonances and
continuum states as integrations over some thresholds s0

1
and s0

2 in the above equations. Then equating the two rep-
resentations of the correlation function in (7) and (10),
we can get an equation for the form factors. To improve
such an equation, we make a Borel transformation over p2

1
and p2

2 in both sides, which can further suppress higher
resonance contributions. The definition of a Borel trans-
formation to any function f(p2) is

B̂
∣∣∣
p2,M2

f(p2) = lim
n → ∞
p2 → −∞
−p2/n = M2

(−p2)n

(n − 1)!
∂n

∂(p2)n
f(p2).

Some examples of the Borel transformation are given
in the following:

B̂
∣∣∣
p2,M2

1
(s − p2)k

=
1

(k − 1)!
1

(M2)k
e−s/M2

,

B̂
∣∣∣
p2,M2

(p2)k = 0, for any k ≥ 0.

Equating the two representations of the correlation
function, subtracting the higher resonances and the con-
tinuum contribution, and performing the Borel transfor-
mation in both variables p2

1 and p2
2, we finally obtain the

sum rules for the form factors,

V (q2) =
(mc + ms)(mDs

+ mφ)
2mφfφfDsm

2
Ds

× em2
Ds

/M2
1 em2

φ/M2
2 M2

1 M2
2 B̂f0,

A1(q2) = − (mc + ms)
mφfφfDs

m2
Ds

(mDs
+ mφ)

× em2
Ds

/M2
1 em2

φ/M2
2 M2

1 M2
2 B̂f5,

A2(q2) =
(mc + ms)(mDs + mφ)

mφfφfDs
m2

Ds

× em2
Ds

/M2
1 em2

φ/M2
2 M2

1 M2
2

1
2
B̂(f1 + f3),

A0(q2) = − (mc + ms)
2m2

φfφfDsm
2
Ds

em2
Ds

/M2
1 em2

φ/M2
2 M2

1 M2
2

×
[
B̂(f1 + f3)

m2
Ds

− m2
φ

2
+ B̂(f1 − f3)

q2

2
+ f5

]
,(12)

where B̂fi denotes the Borel transformed fi in both vari-
ables p2

1 and p2
2, and M1 and M2 are Borel parameters. Be-

cause we have subtracted the higher resonance and contin-
uum contribution, now the dispersion integration for the
perturbative and gluon-condensate contribution should be
performed under the threshold,

fpert
i =

∫ s2
1

ds1

∫ s2
2

ds2
ρpert

i (s1, s2, q
2)

(s1 − p2
1)(s2 − p2

2)
,

f
(4)
i =

∫ s2
1

ds1

∫ s2
2

ds2
ρ
(4)
i (s1, s2, q

2)
(s1 − p2

1)(s2 − p2
2)

.

In the next section, we will explain the technique of
calculating the Wilson coefficients and give the resulting
form of the sum rules for the form factors.

3 The calculation of the Wilson coefficients

In this work, we first calculate the Wilson coefficients in
the operator-product expansion [13], then extract the rele-
vant terms fi for the sum rules of the form factors in (12).
We will not present the result of each Wilson coefficient
here because their forms are very tedious. We only give the
results of the form factors according to the contribution
of each condensate.

3.1 The calculation of the perturbative part

The diagram for the perturbative contribution is depicted
in Fig. 1. The expansion to leading order in αs is consid-
ered here. This contribution amounts to the Wilson co-
efficient C0 in the OPE representation of the correlation
function in (9). We can write down this amplitude (see
Fig. 1),
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o

xy

p1 p2

c

s

s

Fig. 1. Diagram for perturbative contribution

C0 = i2
∫

d4k

(2π)4
(−1)

× Tr
[
iγ5

i(� k + ms)
k2 − m2

s + iε
γν

i(� k+ � p2 + ms)
(k + p2)2 − m2

s + iε

×γµ(1 − γ5)
i(� k+ � p1 + ms)

(k + p1)2 − m2
c + iε

]
. (13)

The above integration can be performed according to
Cutkosky’s rule [14]. That is, we write the integration of
(13) in the form of a dispersion integration,

C0 =
∫

ds1ds2
ρ(s2

1, s
2
2, q

2)
(s1 − p2

1)(s2 − p2
2)

. (14)

The spectral density ρ(s1, s2, q
2) can be directly calculated

by substituting the denominators of the quark propagators
for δ functions, i.e., putting all the quark lines on mass
shell,

1
k2 − m2

s + iε
→ −2πiδ(k2 − m2

s), etc.; (15)

then the spectral density can be calculated from

ρ(s1, s2, q
2) =

1
(2πi)2

(−2πi)3

×
∫

d4k

(2π)4
Tr [γ5(� k + ms)γν(� k+ � p2 + ms)γµ(1 − γ5)

×(� k+ � p1 + mc)] δ(k2 − m2)δ
[
(k + p1)2 − m2

1
]

×δ
[
(k + p2)2 − m2

2
]∣∣

p2
1 → s1

p2
2 → s2

. (16)

To perform the above integration, some basic formulas are
needed. Part of them have been given in [15] without the
quark mass; here we calculate them with the quark masses
included,

I =
∫

d4kδ(k2 − m2)δ
[
(k + p1)2 − m2

1
]

×δ
[
(k + p2)2 − m2

2
]

=
π

2
√

λ
, (17)

Iµ =
∫

d4kkµδ(k2 − m2)δ
[
(k + p1)2 − m2

1
]

×δ
[
(k + p2)2 − m2

2
]

≡ a1p1µ + b1p2µ, (18)




a1 = − π
2λ3/2 [s2(−s1 + s2 − q2)

+(s1 + s2 − q2)(m2 − m2
2)

−2s2(m2 − m2
1)],

b1 = − π
2λ3/2 [s1(−s2 + s1 − q2)

+(s1 + s2 − q2)(m2 − m2
1)

−2s1(m2 − m2
2)],

Iµν =
∫

d4kkµkνδ(k2−m2)δ[(k+p1)2−m2
1]δ[(k+p2)2−m2

2]

≡a2p1µp1ν+b2p2µν+c2(p1µp2ν+p1νp2µ)+d2gµν , (19)


D1 ≡ s1 − m2
1 + m2, D2 ≡ s2 − m2

2 + m2,

a2 = π
λ3/2 m2s2

+ 1
λ [3s2D1a1 − (s1 + s2 − q2)D2b1

+s2D2b1],
b2 = π

λ3/2 m2s1

+ 1
λ [s1D1a1 − (s1 + s2 − q2)D1b1

+3s1D2b1],
c2 = − π

λ3/2 m2 1
2 (s1 + s2 − q2)

− 1
λ

[ 1
2 (s1 + s2 − q2)D1a1 − 2s2D1b1

+ 3
2 (s1 + s2 − q2)D2b1

]
,

d2 = π
4
√

λ
+ 1

4 [D1a1 + D2b1],

where λ(s1, s2, q
2) = (s1 + s2 − q2)2 − 4s1s2, and in (17)–

(19) the substitutions p2
1 → s1 and p2

2 → s2 have been
indicated.

3.2 The contribution of the bi-quark operators
Ψ̄(x)Ψ(y), Ψ̄(0)Ψ(x)

The diagrams for the contributions of Ψ̄(x)Ψ(y) and
Ψ̄(0)Ψ(x) are shown in Fig. 2. The contribution of Fig. 2b
is zero after a double Borel transformation in both vari-
ables p2

1 and p2
2 because only one variable appears in the

denominator 1/(p2
2 − m2

s). So we will not consider Fig. 2b
in the following. The contribution of Fig. 2a to the corre-
lation function is

Π2a
µν = i2

∫
d4xd4yeip2·x−ip1·y

× 〈0|Ψ̄(x)γν iSs
F(x)γµ(1 − γ5)iSc

F(−y)iγ5Ψ(y)|0〉, (20)

where iSs
F(x) and iSc

F(−y) are the propagators of s and
c quarks, respectively. Moving the quark field operators
Ψ̄(x) and Ψ(y) together, we get

××

o

xy

×
×

o

xy

a b

Fig. 2. Diagrams for the contributions of the non-local oper-
ators Ψ̄(x)Ψ(y) and Ψ̄(0)Ψ(x)
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Π2a
µν = i2

∫
d4xd4yeip2·x−ip1·y

× 〈0|Ψ̄α(x)Ψβ(y)|0〉 [γν iSs
F(x)γµ(1 − γ5)

×iSc
F(−y)iγ5]αβ , (21)

where α and β are Dirac spinor indices. The matrix ele-
ment 〈0|Ψ̄β(x)Ψα(y)|0〉 can be dealt with in the fixed-point
gauge [16]. We expand it up to the order of x3 and y3 using
the technique explained in [4,15,17],

〈0|Ψ̄a
α(x)Ψ b

β(y)|0〉

= δab

[
〈Ψ̄Ψ〉

(
1
12

δβα + i
m

48
(� x− � y)βα

− m2

96
(x − y)2δβα − i

3!
m3

96
(x − y)2(� x− � y)βα

)

+ g〈Ψ̄TGσΨ〉
(

1
192

(x − y)2δβα

+
i
3!

m

192
(x − y)2(� x− � y)βα

)

− i
3!

g2

34 × 24 〈Ψ̄Ψ〉2(x − y)2(� x− � y)βα + · · ·
]

, (22)

a and b in the above are the color indices, m is the quark
mass, and the ellipsis stands for terms of higher orders in
the x and y expansion. From (22) we know that Fig. 2a
contributes to the coefficients of the quark condensate
〈Ψ̄Ψ〉, the mixed quark–gluon condensate g〈Ψ̄TGσΨ〉 and
the four-quark condensate 〈Ψ̄Ψ〉2. Substituting (22) into
(21) and integrating over the coordinates x and y, we can
explicitly obtain the coefficients of these condensates con-
tributed by Fig. 2a.

3.3 Contributions of the bi-gluon operator Ga
µνGaµν

The diagrams for the contribution of the bi-gluon operator
are depicted in Fig. 3. They are calculated in the fixed-
point gauge, in which the gauge fixing condition is taken
to be xµAa

µ(x) = 0 [16]. Then the external gauge field can
be expressed directly in terms of the color field strength
tensor [18]:

Aa
µ(x) =

∫ 1

0
dααxρGa

ρµ(αx), (23)

which is expanded to the first order to be

Aa
µ(x) =

1
2
xρGa

ρµ(0) + · · · (24)

In the following calculation, it is convenient to transform
Aa

µ(x) to the momentum space,

Aa
µ(k) = − i

2
(2π)2

∂

∂kρ
δ4(k)Ga

ρµ(0) + · · · (25)

Then the amplitude can be written down in the mo-
mentum space by following the standard Feynman rule.

××
× × ××

×
×

× ×

×
×

a b c

d e f

Fig. 3. Diagrams for contributions of the bi-gluon operator

Again, as we did in the previous subsections, we move the
gluon strength tensor operator together: Ga

ασGb
βρ. Then

we use the following decomposition to obtain the bi-gluon
condensate:

〈0|Ga
ασGb

βρ|0〉 =
1
96

〈GG〉δab(gαβgσρ − gαρgσβ), (26)

in which 〈GG〉 is the abbreviation of 〈0|Ga
µνGaµν |0〉.

In the evaluation of the diagrams of Fig. 3 some types
of loop integrals encountered are treated first by deriva-
tives with respect to the quark masses, then we transform
them to dispersion integrals by using Cutkosky’s rule and
with the help of the I, Iµ and Iµν functions given previ-
ously. For instance,∫

d4k
kµkν

(k2 − m2) [(k + p2)2 − m2
2]

2 [(k + p1)2 − m2
1]

2

=
∂

∂m2
2

∂

∂m2
1

×
∫

d4k
kµkν

(k2 − m2) [(k + p2)2 − m2
2] [(k + p1)2 − m2

1]

= −2πi
∂

∂m2
2

∂

∂m2
1

∫
ds1ds2

Iµν

(s1 − p2
1)(s2 − p2

2)
, (27)

and∫
d4k

kµkνk · p2

(k2 − m2)2 [(k + p2)2 − m2
2]

2 [(k + p1)2 − m2
1]

2

=
∂

∂m2
2

∂

∂m2
1

×
∫

d4k
kµkνk · p2

(k2 − m2)2 [(k + p2)2 − m2
2] [(k + p1)2 − m2

1]

= −2πi
∂

∂m2

∂

∂m2
2

∂

∂m2
1

×
∫

ds1ds2
− 1

2 (s2 − m2
2 + m2)Iµν

(s1 − p2
1)(s2 − p2

2)
, (28)
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×

×
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×
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a b c d
Fig. 4. Diagrams for mixed quark–gluon
operators

where the term − 1
2 (s2 −m2

2 +m2) comes from the δ func-
tions δ(k2 − m2)δ

[
(k + p2)2 − m2

2
]

with the substitution
p2
2 → s2 when using Cutkosky’s rule.

After some long steps of calculation, we finally find
that the contributions of the diagrams (a) to (f) in Fig. 3
cancel each other. Therefore there are no contributions of
the gluon condensate in the Ds → Φ transition.

3.4 Contributions of quark–gluon mixing
and four-quark operators: Ψ̄(x)Ψ(y)Ga

µν and 〈Ψ̄Ψ〉2

The diagrams for quark–gluon mixing and four-quark con-
tributions are depicted in Figs. 4 and 5, respectively. The
techniques are similar to that explained in the previous
subsections. We only give some different points here.

The vacuum average of the non-local quark–gluon mix-
ing operator Ψ̄(x)Ψ(y)Ga

µν is calculated to be

〈0|Ψ̄ i
α(x)Ψ j

β(y)Ga
µν |0〉

=
1

192
〈Ψ̄σTGΨ〉(σµν)βαT a

ji

+
[
− g

96 × 9
〈Ψ̄Ψ〉2(gρµγν − gρνγµ)(x + y)ρ

+i(y − x)ρ

(
g

96 × 9
〈Ψ̄Ψ〉2

+
m

96 × 4
〈Ψ̄σTGΨ〉

)
ερµνσγ5γ

σ

]
βα

T a
ji, (29)

××

×
×

××

×
×

××

×
×

××

×
×

××

×
×

××

×
×

a b c

d e f

Fig. 5. Diagrams for four-quark contributions

where 〈Ψ̄σTGΨ〉 and 〈Ψ̄Ψ〉2 are the abbreviations of
〈0|Ψ̄σµνT aGaµνΨ |0〉 and 〈0|Ψ̄Ψ |0〉2, respectively. g is the
strong coupling.

Because we calculate up to the condensate of
dimension-six operators, the external gluon field Aa

µ(x) in
Fig. 4 should be expanded up to the second term, which
will contribute a dimension-six operator,

Aa
µ(x) =

∫ 1

0
dααxρGa

ρµ(αx)

=
1
2
xρGa

ρµ(0) +
1
3
xαxρD̂αGa

ρµ(0) + · · · , (30)

where D̂α is the covariant derivative in the adjoint repre-
sentation, (D̂α)mn = ∂αδmn − gfamnAa

α. Then the other
vacuum matrix element needed is [15]

〈0|Ψ̄ i
αΨ j

βD̂ξG
a
σρ|0〉

= − g

33 × 24 〈Ψ̄Ψ〉2(gξργσ − gξσγρ)βαT a
ji . (31)

We calculate these diagrams and find that the contribu-
tions of Figs. 4c,d and 5c,d vanish after double Borel trans-
formation in the two variables p2

1 and p2
2, because only one

variable is appearing in the denominator; for instance,
1

q2(p2
2−m2

2)
. The Borel transformation in p2

1 will kill such
terms.

Following the above method, after some tedious alge-
braic derivations with the software MATHEMATICA, we
obtain the coefficients f0, f1 + f3, f1 − f3 and f5 needed
in (12). They are listed in the appendix.

4 Numerical analysis and discussion

In the numerical analysis the standard values of the con-
densates at the renormalization point µ = 1 GeV are taken
to be [1,20]

〈q̄q〉 = −(0.24 ± 0.01 GeV)3, 〈s̄s〉 = m2
0〈q̄q〉,

g〈Ψ̄σTΨ〉 = m2
0〈Ψ̄Ψ〉, αs〈Ψ̄Ψ〉2 = 6.0 × 10−5 GeV6,

m2
0 = 0.8 ± 0.2 GeV2. (32)

The quark masses are fixed to be ms = 140 MeV, mc =
1.3 GeV [21], and the decay constant of the φ meson is
extracted from the experimental data to be fφ = 0.228
[22]. For the decay constant of the Ds meson we take
fDs

= 0.214 ± 0.038 GeV [21].
The Borel parameters M1 and M2 are not physical pa-

rameters. The physical result should not depend on them
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Table 1. Requirements to select the Borel parameters M2
1 and

M2
2 for each form factors V (0), A0(0), A1(0) and A2(0)

Form factors Contribution
of

condensate

Continuum
of Ds

channel

Continuum
of φ channel

V (0) ≤ 49% ≤ 5% ≤ 26%

A0(0) ≤ 29% ≤ 16% ≤ 31%

A1(0) ≤ 49% ≤ 18% ≤ 22%

A2(0) ≤ 11% ≤ 27% ≤ 5%

if the operator-product expansion can be calculated up to
infinite order. However, OPE has to be truncated to some
finite orders in practice. Therefore, the Borel parameters
have to be selected in some “windows” to get the best
stability of the physical results. The requirement to select
the stable “windows” is: the Borel parameters cannot be
too large, or contributions of higher resonance and contin-
uum states cannot be effectively suppressed; at the same
time, they should not be too small, or the truncated OPE
would fail because the series in OPE generally depend on
the Borel parameters in the denominator 1/M . We find the
optimal stability with the requirements shown in Table 1
and the thresholds s0

1, s0
2 in the ranges s0

1 = 5.8–6.2 GeV2,
s0
2 = 1.9–2.1 GeV2. The regions of the Borel parameters

which satisfies the requirements of Table 1 are shown in
Fig. 6 in a two-dimensional diagram of M2

1 and M2
2 . We

find good stability of the form factors within these regions.
Because it is not easy to show the contribution of

each term of OPE in the two-dimensional regions of M2
1

and M2
2 , we show the contributions of perturbative and

condensate terms in Table 2 at a representative point
(M2

1 , M2
2 ) in the stable region of M2

1 and M2
2 . In general

the higher the dimension of the operators, the smaller the
relevant contributions of the condensates. The main con-
tributions to V (0), A1(0) and A2(0) are from the pertur-
bative and quark condensate term. For A0(0), the largest
two contributions are from the perturbative term and the
mixed quark–gluon condensate. Contributions of the four-
quark condensate are less than a few percent; therefore
contributions of the operator of dimension 6 are negligi-
ble.

The final results for the form factors at q2 = 0 are

V (0) = 1.21 ± 0.33,

A0(0) = 0.42 ± 0.12,

A1(0) = 0.55 ± 0.15,

A2(0) = 0.59 ± 0.17,

rV ≡ V (0)
A1(0)

= 2.20 ± 0.85,

r2 ≡ A2(0)
A1(0)

= 1.07 ± 0.43. (33)

We compare our results for the ratios of form factors
with the experimental data in Table 3. It shows that the
results are consistent with the experimental data.

The physical region for q2 in Ds → φ�̄ν decay ex-
tends from 0 to (mDs

− mφ)2 	 0.9 GeV2. In the range
q2 < 0.4 GeV2, there is no non-Landau-type singularity [5]
with the thresholds s0

1 and s0
2 chosen in this paper. The q2

dependence of the form factors is shown in Fig. 7 in the
range −0.4 GeV2 < q2 < 0.4 GeV2. Within this range, the
behavior of V (q2) and A0(q2) is well compatible with the
pole model,

V (q2) =
V (0)

1 − q2/mV
pole

,

while the q2 dependence of and A1(q2) and A2(q2) is very
weak.

We fit V (q2) and A0(q2) by the pole model in the range
−0.4 GeV2 < q2 < 0.4 GeV2 and extrapolate the fitted
result to the whole physical region. The fitted pole masses
are

mV
pole = 2.08 ± 0.13 GeV,

mA0
pole = 1.9 ± 0.2 GeV. (34)

The form factors calculated by the QCD sum rule in
this paper are used to calculate the differential and to-
tal decay rate of Ds → φ�̄ν decay. There are three po-
larization states for the φ meson: one longitudinal state,
two transverse polarization states (right-handed and left-
handed). The differential decay rate to the longitudinally
polarized φ meson is

Table 2. Contributions of perturbative and condensate terms in the
operator-product expansion to the form factors V (0), A0(0), A1(0) and
A2(0), at a representative point (M2

1 , M2
2 ) in the stable region of M2

1 and
M2

2 . fpert: perturbative; f (3): quark condensate; f (4): gluon condensate;
f (5): mixed quark–gluon condensate; f (6): four-quark condensate

Form factors total fpert f (3) f (4) f (5) f (6) (M2
1 , M2

2 ) GeV2

V (0) 1.20 0.63 0.66 0 −0.10 0.01 (2.2, 1.4)
A0(0) 0.43 0.28 −0.10 0 0.23 0.02 (1.7, 1.5)
A1(0) 0.53 0.28 0.20 0 0.04 0.01 (2.0, 1.2)
A2(0) 0.57 0.22 0.44 0 −0.09 0.00 (3.6, 1.5)
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Fig. 6. Selected regions of M2
1 and M2

2 :
a for V ; b for A0; c for A1; d for A2

dΓL

dq2 =
G2

F|Vcs|2
192π3m3

Ds

√
λ(m2

Ds
, m2

φ, q2)

×
∣∣∣∣ 1
2mφ

[
(m2

Ds
− m2

φ − q2)(mDs
+ mφ)A1(q2)

−λ(m2
Ds

, m2
φ, q2)

mDs
+ mφ

A2(q2)

]∣∣∣∣∣
2

, (35)

where GF is Fermi constant, Vcs is CKM matrix element
for the c → s transition, and

λ(m2
Ds

, m2
φ, q2) ≡ (m2

Ds
+ m2

φ − q2)2 − 4m2
Ds

m2
φ.

The differential decay rate to the transverse state is

Table 3. Comparison of our results of rV and r2 with experi-
mental data: E791 is from [11], CLEO from [10], E687 from [9]
and E653 from [8]

rV r2

E791 2.27 ± 0.35 ± 0.22 1.57 ± 0.25 ± 0.19
CLEO 0.9 ± 0.6 ± 0.3 1.4 ± 0.5 ± 0.3
E687 1.8 ± 0.9 ± 0.2 1.1 ± 0.8 ± 0.1
E653 2.3+1.1

−0.9 ± 0.4 2.1+0.6
−0.5 ± 0.2

average 1.92 ± 0.32 1.60 ± 0.24
our result 2.20 ± 0.85 1.07 ± 0.43

dΓ±
T

dq2 =
G2

F|Vcs|2
192π3m3

Ds

λ(m2
Ds

, m2
φ, q2)

×
∣∣∣∣∣∣

V (q2)
mDs

+ mφ
∓ (mDs + mφ)A1(q2)√

λ(m2
Ds

, m2
φ, q2)

∣∣∣∣∣∣
2

, (36)

where the symbols “+” and “−” denote right- and left-
handed states, respectively. Finally, the combined trans-
verse and total differential decay rates are

dΓT

dq2 =
d

dq2 (Γ+
T + Γ−

T ),
dΓ

dq2 =
d

dq2 (ΓL + ΓT). (37)

-0.4 -0.2 0 0.2 0.4

0.4

0.6

0.8

1

1.2

Fig. 7. The q2 dependence of the form factors from the QCD
sum rule. The solid curve is for V (q2), the short dashed curve
for A0(q2), the long dashed curve for A1(q2), and the dotted
one is for A2(q2)
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Fig. 8. Differential decay widths of D+
s → φ�̄ν as a function of momentum transfer

squared q2 in units of 10−14 GeV−1

The differential decay widths as a function of momen-
tum transfer squared q2 are shown in Fig. 8. We integrate
them over q2 in the whole physical region from q2 = 0 to
(mDs

− mφ)2 to get the integrated decay widths

Γ+
T = (1.39 ± 0.75) × 10−15 GeV,

Γ−
T = (1.05 ± 0.22) × 10−14 GeV,

ΓL = (1.18 ± 0.43) × 10−14 GeV,

ΓT = (1.19 ± 0.29) × 10−14 GeV, (38)

and the ratio of ΓL/ΓT is

ΓL/ΓT = 0.99 ± 0.43 , (39)

which is consistent with the averaged experimental data:
(ΓL/ΓT)exp = 0.72±0.18 [22]. The detailed comparison of
this ratio with experimental data is shown in Table 4.

We use the total decay width of Ds meson ΓDs =
1.34 × 10−12 [22] to obtain the branching ratio of D+

s →
φ�̄ν, and our result is

Br(D+
s → φ�̄ν) = (1.8 ± 0.5)%, (40)

which is in good agreement with the experimental data:
Br(D+

s → φ�̄ν)exp = (2.0 ± 0.5)%.

5 Summary

We calculate the transition form factors for the Ds → φ
transition in the region q2 ≤ 0.4 GeV2 by the QCD sum

Table 4. Comparison of our results of ΓL/ΓT with the exper-
imental data: CLEO from [10], E687 from [9] and E653 from
[8]

ΓL/ΓT

CLEO 1.0 ± 0.3 ± 0.2
E687 1.0 ± 0.5 ± 0.1
E653 0.54 ± 0.21 ± 0.10
average 0.72 ± 0.18
our result 0.99 ± 0.43

rule, where no non-Landau-type singularity occurs. Then
we fit the result from the QCD sum rule in this region of
momentum transfer and extrapolate it to the whole physi-
cal region in the decay D+

s → φ�̄ν. We treat the two Borel
parameters M2

1 and M2
2 as independent parameters and

select the allowed region for M2
1 and M2

2 by requiring that
the higher resonance and continuum contributions in the
Ds and φ channels are not large, at the same time requir-
ing that the condensate of higher dimension operators do
not contribute too much. We find good stability for the
transition form factors V , A0, A1 and A2 in the relevant
two-dimensional regions of M2

1 and M2
2 . We obtain the

results of the transition form factors V , A0, A1 and A2 in
these regions of M2

1 and M2
2 . Our result of the ratios of

these form factors rV and r2 are well consistent with the
experimental data.
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We studied the process D+
s → φ�̄ν with the form fac-

tors calculated by the QCD sum rule. For the transverse
polarization state of the final φ meson, the rate of Ds de-
caying to the right-hand state is almost an order smaller
than the one for decaying to the left-hand state. The ra-
tio of ΓL/ΓT and the branching ratio of D+

s → φ�̄ν are
in good agreement with the experimental data within the
error bars of both the present experimental data and the
theoretical calculation.
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Appendix

Borel transformed coefficients of perturbative and non-
perturbative contributions to the transition form factors
in (12) are given here. The contributions of the condensate
of the dimension-six operator 〈Ψ̄Ψ〉2 are numerically neg-
ligible, whereas their expressions are more tedious; there-
fore we do not present all of them here.
(1) Results for f0:

B̂f0 = B̂fpert
0 + B̂f

(3)
0 + B̂f

(5)
0 + B̂f

(6)
0 ,

with

B̂fpert
0 =

∫ s0
2

4m2
s

ds2

∫ s0
1

sL
1

ds1
3e−s1/M2

1 −s2/M2
2

4M2
1 M2

2 π2λ3/2

× [
2s2m

3
c − 2s2msm

2
c − s2(2m2

s + s1 − s2 + q2)mc

+ms(−s2
2 + 2m2

ss2 + s1s2 + q2s2 + λ)
]
, (A1)

where λ = (s1 + s2 − q2)2 − 4s1s2. The lower integration
limit sL

1 is determined by the condition that all internal
quarks are on their mass shell [19],

sL
1 =

m2
c

m2
c − q2 s2 + m2

c .

We have

B̂f
(3)
0 = −e−m2

c/M2
1 −m2

s/M2
2

6M8
1 M8

2

× [(
6M2

1 M6
2 − 3(M2

1 + q2)m2
sM

4
2

+ (4(M2
1 + M2

2 ) + q2)m4
sM

2
2 − (M2

1 + M2
2 )m6

s

)
M4

1

+ M2
2 (M2

1 + M2
2 )m2

cm
2
s(3M2

2 − m2
s)M

2
1

+ M2
2 mcms(−3M2

1 M4
2 + (M2

1 + M2
2 + q2)m2

sM
2
2

− (M2
1 + M2

2 )m4
s)M

2
1 − M4

2 (M2
1 + M2

2 )m3
cm

3
s

]
× 〈s̄s〉 , (A2)

B̂f
(5)
0 = −e−m2

c/M2
1 −m2

s/M2
2

12M8
1 M8

2

× [
(3M6

2 − M2
1 M4

2 + (M2
1 + M2

2 )m4
s

− (3M4
2 + 5M2

1 M2
2 )m2

s)M
4
1

− M2
2 (M2

1 + M2
2 )m2

c(3M2
2 − m2

s)M
2
1

+ M2
2 mcms(2M4

2 − 2M2
1 M2

2 + (M2
1 + M2

2 )m2
s)M

2
1

+ M4
2 (M2

1 + M2
2 )m3

cms

+ q2(M4
1 M2

2 (3M2
2 − m2

s) − M2
1 M4

2 mcms)
]

× g〈s̄σTGs〉 , (A3)

B̂f
(6)
0 =

e−m2
c/M2

1 −m2
s/M2

2

81M8
1 M8

2 (m2
c − q2)m3

s

×
[
18

(
−1 + em2

s/M2
2

)
M6

1 (2mc − ms)msM
6
2

+ (M2
1 + M2

2 )m5
cm

3
sM

4
2 + M2

1 (M2
1 + M2

2 )m4
cm

4
sM

2
2

+ M2
1 q4m3

s(msM
2
1 + M2

2 mc)M2
2

+ M2
1 m3

cm
3
s(−13M4

2 + 2M2
1 M2

2 + (M2
1 + M2

2 )m2
s)M

2
2

+ M4
1 m2

c

(
−54

(
−1 + em2

s/M2
2

)
M2

1 M6
2

+ 54M2
1 m2

sM
4
2 − (M2

1 + 10M2
2 )m4

sM
2
2 + (M2

1 + M2
2 )m6

s

)
+ q2

(
54

(
−1 + em2

s/M2
2

)
M6

2 M6
1 − 54M4

2 m2
sM

6
1

− (M2
1 + M2

2 )m6
sM

4
1 − M2

2 (M2
1 + M2

2 )mcm
5
sM

2
1

+ M2
2 (M4

1 + 10M2
2 M2

1 − (2M2
1 + M2

2 )m2
c)m

4
sM

2
1

− M2
2 mc(2M4

1 − 13M2
2 M2

1 + (2M2
1 + M2

2 )m2
c)m

3
s

)]
× g2〈s̄s〉2 . (A4)

(2) Results for f1 + f3:

B̂(f1 + f3) = B̂fpert
+ + B̂f

(3)
+ + B̂f

(5)
+ + B̂f

(6)
+ ,

with

B̂fpert
+ =

∫ s0
2

4m2
s

ds2

∫ s0
1

sL
1

3e−s1/M2
1 −s2/M2

2

4M2
1 M2

2 π2λ5/2

× {−6s2(−s1 + s2 + q2)m5
c + 6s2(−s1 + s2 + q2)msm

4
c

+ 2s2
(−4s2

1 + 8s2s1 − 4s2
2 + 2q4 − 6(s1 − s2)m2

s

+ λ + 2q2(3m2
s + s1 + s2)

)
m3

c

+ 2s2ms

[
4s2

1 − 8s2s1 + 4s2
2 − 2q4 + 6(s1 − s2)m2

s − 3λ

− 2q2(3m2
s + s1 + s2)

]
m2

c

+
[
6(s1 − s2)s2m

4
s

+ 2(4s3
2 − 8s1s

2
2 + 4s2

1s2 − 2λs2 + s1λ)m2
s

+ (s1 − s2)s2(2s2
1 − 4s2s1 + 2s2

2 − λ)
− 2s2q

4(2m2
s + 2s1 + s2)

+ q2 (−6s2m
4
s − 2(2s2

2 + 2s1s2 + λ)m2
s

+ s2(2s2
1 − 6s2s1 + 4s2

2 − λ)
)]

mc

+ ms

[
2s4

2 − 6s1s
3
2 + 6s2

1s
2
2 − 3λs2

2

+ 6(s2 − s1)m4
ss2 − s3

1s2 + 3s1λs2

+ 2q4(2m2
s + 2s1 + s2)s2 + λ2

− 2(4s3
2 − 8s1s

2
2 + 4s2

1s2 − 4λs2 + s1λ)m2
s

+ q2 (
6s2m

4
s + 2(2s2
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